Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712215

ABSTRACT

Understanding individual differences in cognitive control is a central goal in psychology and neuroscience. Reliably measuring these differences, however, has proven extremely challenging, at least when using standard measures in cognitive neuroscience such as response times or task-based fMRI activity. While prior work has pinpointed the source of the issue - the vast amount of cross-trial variability within these measures - no study has rigorously evaluated potential solutions. Here, we do so with one potential way forward: an analytic framework that combines hierarchical Bayesian modeling with multivariate decoding of trial-level fMRI data. Using this framework and longitudinal data from the Dual Mechanisms of Cognitive Control project, we estimated individuals' neural responses associated with cognitive control within a color-word Stroop task, then assessed the reliability of these individuals' responses across a time interval of several months. We show that in many prefrontal and parietal brain regions, test-retest reliability was near maximal, and that only hierarchical models were able to reveal this state of affairs. Further, when compared to traditional univariate contrasts, multivariate decoding enabled individual-level correlations to be estimated with significantly greater precision. We specifically link these improvements in precision to the optimized suppression of cross-trial variability in decoding. Together, these findings not only indicate that cognitive control-related neural responses individuate people in a highly stable manner across time, but also suggest that integrating hierarchical and multivariate models provides a powerful approach for investigating individual differences in cognitive control, one that can effectively address the issue of high-variability measures.

2.
Eur J Pharm Biopharm ; : 114315, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38789060

ABSTRACT

In this work, a novel erythrocyte-shaped electrospraying nanoparticle (EENP) was designed and constructed by tri-axial electrospraying technique with PEG as the outer layer, PLGA as the middle drugs (paclitaxel [PTX] and osimertinib [OSI]) carrier layer and air as the inner layer. The prepared EENP were characterized and evaluated based on their spectral and morphological attributes. After the PTX/OSI ratio and process optimization, the EENP has inspiring features, including nanoscale size, erythrocyte morphology with a concave disk shape, and satisfactory drug loading (DL) and encapsulation efficiency (EE). In vitro drug release showed that PTX and OSI in the formulation were released in the same ratio, and the cumulative release percentage at 24 h was close to 80 %. Furthermore, the TGIR in the EENP formulation group exceeded 90 %, approximately 3.8-fold higher than that in the free drug group. In summary, we developed an erythrocyte three-core-shell nanoparticle for the co-delivery of PTX and OSI, providing a potential chemotherapeutic delivery system for the treatment of breast cancer.

3.
J Bone Miner Metab ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753007

ABSTRACT

INTRODUCTION: High + Gz loads, the gravitational forces experienced by the body in hypergravity environments, can lead to bone loss in pilots and astronauts, posing significant health risks. MATERIALS AND METHODS: To explore the effect of treadmill exercise on bone tissue recovery, a study was conducted on 72 male Wistar rats. These rats were subjected to four weeks of varying levels of periodic high + Gz loads (1G, 8G, 20G) experiments, and were subsequently divided into the treadmill group and the control group. The treadmill group underwent a continuous two-week treadmill experiment, while the control group rested during this period. The mechanical properties, microstructure, and molecular markers of their tibial bone tissue were measured using three-point bending, micro-CT, and PCR. RESULTS: The results showed that treadmill exercise improved the elastic modulus, ultimate deflection, and ultimate load of rat bone tissue. It also increased the number, density, and volume fraction of bone trabeculae, and decreased their separation. Moreover, treadmill exercise enhanced osteogenesis and inhibited osteoclastogenesis. CONCLUSION: This study demonstrates that treadmill exercise can promote the recovery of bone tissue in rats subjected to high + Gz loads, providing a potential countermeasure for bone loss in pilots and astronauts.

4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 328-334, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686414

ABSTRACT

Superficial cartilage defect is an important factor that causes osteoarthritis. Therefore, it is very important to investigate the influence of superficial cartilage defects on its surface morphology and mechanical properties. In this study, the knee joint cartilage samples of adult pig were prepared, which were treated by enzymolysis with chymotrypsin and physical removal with electric friction pen, respectively. Normal cartilage and surface treated cartilage were divided into five groups: control group (normal cartilage group), chymotrypsin immersion group, chymotrypsin wiping group, removal 10% group with electric friction pen, and removal 20% group with electric friction pen. The surface morphology and structure of five groups of samples were characterized by laser spectrum confocal microscopy and environmental field scanning electron microscopy, and the mechanical properties of each group of samples were evaluated by tensile tests. The results show that the surface arithmetic mean height and fracture strength of the control group were the smallest, and the fracture strain was the largest. The surface arithmetic mean height and fracture strength of the removal 20% group with electric friction pen were the largest, and the fracture strain was the smallest. The surface arithmetic mean height, fracture strength and fracture strain values of the other three groups were all between the above two groups, but the surface arithmetic mean height and fracture strength of the removal 10% group with electric friction pen, the chymotrypsin wiping group and the chymotrypsin soaking group decreased successively, and the fracture strain increased successively. In addition, we carried out a study on the elastic modulus of different groups, and the results showed that the elastic modulus of the control group was the smallest, and the elastic modulus of the removal 20% group with electric friction pen was the largest. The above study revealed that the defect of the superficial area of cartilage changed its surface morphology and structure, and reduced its mechanical properties. The research results are of great significance for the prevention and repair of cartilage injury.


Subject(s)
Cartilage, Articular , Animals , Swine , Cartilage, Articular/physiology , Surface Properties , Biomechanical Phenomena , Knee Joint/physiology , Stress, Mechanical , Tensile Strength , Chymotrypsin/metabolism , Microscopy, Electron, Scanning
5.
Physiol Plant ; 176(2): e14296, 2024.
Article in English | MEDLINE | ID: mdl-38650503

ABSTRACT

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Subject(s)
Betaine , Choline Dehydrogenase , Salt Tolerance , Betaine/metabolism , Salt Tolerance/genetics , Choline Dehydrogenase/metabolism , Choline Dehydrogenase/genetics , Choline/metabolism , Chlorophyceae/genetics , Chlorophyceae/physiology , Chlorophyceae/enzymology , Chlorophyceae/metabolism , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Molecular Docking Simulation , Sodium Chloride/pharmacology
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124340, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38676986

ABSTRACT

Three CPs [Zn2(PDA)2(BMIOPE)2·3H2O]n (1), [Co(Br-BDC)(BMIOPE)]n (2) and [Co(MIP)(BMIOPE)]n (3) were synthesized by solvothermal method based on dual-ligand strategy (H2PDA, Br-H2BDC, BMIOPE and H2MIP are 1,3-phenylenediacetic acid, 5-bromo-isophthalic acid, 4,4'-bis(2-methylimidazol-1-yl)diphenyl ether and 5-methylisophthalic acid, respectively). Complexes 1 and 3 exhibit twofold parallel interwoven sql nets. Complex 2 is 2D layer structure. The luminescence property investigations showed that complexes 1-3 could act as multi-responsive fluorescent sensors to detect UO22+, Cr2O72- and CrO42- and nitrofurantoin (NFT) through fluorescence turn-off process, presenting excellent sensitivity and selectivity. Finally, the possible fluorescent quenching mechanisms of complexes 1-3 toward the above pollutants are also further investigated by employing spectroscopic methods and quantum chemical calculations. The fluorescence lifetime measurements manifest the mechanism of fluorescence quenching is static quenching process.

7.
iScience ; 27(4): 109429, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38562522

ABSTRACT

Originally derived from graphite, high-quality single-layer graphene is an excellent anti-wear and -friction additive in metal matrix. Here, the tribological performance of 3 different commercialized graphene derivatives (e.g., graphene oxide [GO], reduced graphene oxide [RGO], and graphene nanoplatelet [GNP]) as additives in a Cu matrix, were investigated from an industrial perspective. To increase the interaction of graphene derivatives with Cu particles, and addressing the aggregation problem of the graphene derivatives, different binders (polyvinyl alcohol [PVA] and cellulose nanocrystals [CNC]) were introduced into the system. Benefiting from such a strategy, a uniform distribution of the graphene derivatives in Cu matrix was achieved with graphene loading up to 5 wt %. After high-temperature sintering, the graphene is preserved and well distributed in the Cu matrix. It was found that the GNP-containing sample shows the most stable friction coefficient behavior. However, GO and RGO also improve the tribological performance of Cu under different circumstances.

8.
Front Cell Neurosci ; 18: 1363154, 2024.
Article in English | MEDLINE | ID: mdl-38590714

ABSTRACT

ADP-ribosylation plays a significant role in various biological processes including genomic stability maintenance, transcriptional regulation, energy metabolism, and cell death. Using macrodomain pull-down assay with microglia lysates and MALDI-TOF-MS analysis, we identified vimentin as a major protein highly ADP-ribosylated by the poly(ADP-ribose) polymerases-1 (PARP-1) in response to LPS. ABT-888, a potent inhibitor of PARP-1/2 blocks the disassembly and ADP-ribosylation of vimentin. PARP-1 is a highly abundant nuclear protein. Its nuclear functions in repairing DNA damages induced by various stress signals, such as inflammatory stresses, have been well studied. In contrast, limited studies have been done on the cytoplasmic role(s) of PARP-1. Our study focuses on the cytoplasmic role of PARP-1 during microglia activation. Using immunofluorescence microscopy and Western blotting, we showed that a significant amount of PARP-1 is present in the cytosol of microglia cells stimulated and activated by LPS. Live cell imaging showed the translocation of nuclear PARP-1-EGFP to the cytoplasm in vesicular structures upon LPS stimulation. ABT-888 and U0126 can block this translocation. Immunofluorescence staining with various organelle marker antibodies revealed that PARP-1 vesicles show colocalization with Lamin A/C, suggesting they might be derived from the nuclear envelope through nuclear envelope budding. In conclusion, we demonstrated that PARP-1 is translocated from the nucleus to cytoplasm via vesicles upon LPS stimulation and that cytoplasmic PARP-1 causes ADP-ribosylation and disassembly of vimentin filaments during microglia activation induced by LPS.

9.
Article in English | MEDLINE | ID: mdl-38619953

ABSTRACT

AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization. 4) The system's scalability is limited by its unwieldy architecture. To address the above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-based molecular docking tool enabling high-accuracy and multi-level parallel Vina acceleration. Standing upon the shoulders of Vina-FPGA, we first adapt hybrid fixed-point quantization to minimize accuracy loss. We then propose a SystemC-based model, accelerating the hardware accelerator architecture design evaluation. Next, we propose a novel bidirectional AG module for data-level parallelism. Finally, we optimize the system architecture for scalable deployment on multiple Xilinx ZCU104 boards, achieving task-level parallelism. Vina-FPGA-cluster is tested on three representative molecular docking datasets. The experiment results indicate that in the context of RMSD (for successful docking outcomes with metrics below 2Å), Vina-FPGA-cluster shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-FPGA-cluster achieves 27.33× and 7.26× speedup, respectively. Notably, Vina-FPGA-cluster is able to deliver the 1.38× speedup as GPU implementation (Vina-GPU), with just the 28.99% power consumption.

10.
BMC Musculoskelet Disord ; 25(1): 238, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532343

ABSTRACT

BACKGROUND: Individuals with osteoarthritis present with comorbidities, and the potential causal associations remain incompletely elucidated. The present study undertook a large-scale investigation about the causality between osteoarthritis and variable traits, using the summary-level data of genome-wide association studies (GWAS). METHODS: The present study included the summary-level GWS data of knee osteoarthritis, hip osteoarthritis, hip or knee osteoarthritis, hand osteoarthritis, and other 1355 traits. Genetic correlation analysis was conducted between osteoarthritis and other traits through cross-trait bivariate linkage disequilibrium score regression. Subsequently, latent causal variable analysis was performed to explore the causal association when there was a significant genetic correlation. Genetic correlation and latent causal variable analysis were conducted on the Complex Traits Genomics Virtual Lab platform ( https://vl.genoma.io/ ). RESULTS: We found 133 unique phenotypes showing causal relationships with osteoarthritis. Our results confirmed several well-established risk factors of osteoarthritis, such as obesity, weight, BMI, and meniscus derangement. Additionally, our findings suggested putative causal links between osteoarthritis and multiple factors. Socioeconomic determinants such as occupational exposure to dust and diesel exhaust, extended work hours exceeding 40 per week, and unemployment status were implicated. Furthermore, our analysis revealed causal associations with cardiovascular and metabolic disorders, including heart failure, deep venous thrombosis, type 2 diabetes mellitus, and elevated cholesterol levels. Soft tissue and musculoskeletal disorders, such as hallux valgus, internal derangement of the knee, and spondylitis, were also identified to be causally related to osteoarthritis. The study also identified the putative causal associations of osteoarthritis with digestive and respiratory diseases, such as Barrett's esophagus, esophagitis, and asthma, as well as psychiatric conditions including panic attacks and manic or hyperactive episodes. Additionally, we observed osteoarthritis causally related to pharmacological treatments, such as the use of antihypertensive medications, anti-asthmatic drugs, and antidepressants. CONCLUSION: Our study uncovered a wide range of traits causally associated with osteoarthritis. Further studies are needed to validate and illustrate the detailed mechanism of those causal associations.


Subject(s)
Diabetes Mellitus, Type 2 , Osteoarthritis, Hip , Osteoarthritis, Knee , Humans , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Multifactorial Inheritance , Polymorphism, Single Nucleotide
11.
J Agric Food Chem ; 72(13): 6871-6888, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526460

ABSTRACT

Sesquiterpenes comprise a diverse group of natural products with a wide range of applications in cosmetics, food, medicine, agriculture, and biofuels. Heterologous biosynthesis is increasingly employed for sesquiterpene production, aiming to overcome the limitations associated with chemical synthesis and natural extraction. Sesquiterpene synthases (STSs) play a crucial role in the heterologous biosynthesis of sesquiterpene. Under the catalysis of STSs, over 300 skeletons are produced through various cyclization processes (C1-C10 closure, C1-C11 closure, C1-C6 closure, and C1-C7 closure), which are responsible for the diversity of sesquiterpenes. According to the cyclization types, we gave an overview of advances in understanding the mechanism of STSs cyclization from the aspects of protein crystal structures and site-directed mutagenesis. We also summarized the applications of engineering STSs in the heterologous biosynthesis of sesquiterpene. Finally, the bottlenecks and potential research directions related to the STSs cyclization mechanism and application of modified STSs were presented.


Subject(s)
Alkyl and Aryl Transferases , Sesquiterpenes , Sesquiterpenes/metabolism , Cyclization , Catalysis , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism
12.
J Agric Food Chem ; 72(13): 7308-7317, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38529564

ABSTRACT

Kauralexin A1 (KA1) is a key intermediate of the kauralexin A series metabolites of maize phytoalexins. However, their application is severely limited by their low abundance in maize. In this study, an efficient biosynthetic pathway was constructed to produce KA1 in Saccharomyces cerevisiae. Also, metabolic and enzyme engineering strategies were applied to construct the high-titer strains, such as chassis modification, screening synthases, the colocalization of enzymes, and multiple genomic integrations. First, the KA1 precursor ent-kaurene was synthesized using the efficient diterpene synthase GfCPS/KS from Fusarium fujikuroi, and optimized to reach 244.36 mg/L in shake flasks, which displayed a 200-fold increase compared to the initial strain. Then, the KA1 was produced under the catalysis of ZmCYP71Z18 from Zea mays and SmCPR1 from Salvia miltiorrhiza, and the titer was further improved by integrating the fusion protein into the genome. Finally, an ent-kaurene titer of 763.23 mg/L and a KA1 titer of 42.22 mg/L were achieved through a single-stage fed-batch fermentation in a 5 L bioreactor. This is the first report of the heterologous biosynthesis of maize diterpene phytoalexins in S. cerevisiae, which lays a foundation for further pathway reconstruction and biosynthesis of the kauralexin A series maize phytoalexins.


Subject(s)
Diterpenes, Kaurane , Diterpenes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Phytoalexins , Diterpenes, Kaurane/metabolism , Diterpenes/metabolism , Fermentation , Metabolic Engineering
13.
Front Pharmacol ; 15: 1354323, 2024.
Article in English | MEDLINE | ID: mdl-38389923

ABSTRACT

Acting as a cysteine protease, small ubiquitin-like modifier (SUMO)/sentrin-specific protease1 (SENP1) involved in multiple physiological and pathological processes through processing the precursor SUMO protein into mature form and deSUMOylating target protein. It has been reported that SENP1 is highly expressed and plays a carcinogenic role in various cancers. In this paper, we mainly explore the function and mechanism of SENP1 in tumor cell proliferation, apoptosis, invasion, metastasis, stemness, angiogenesis, metabolism and drug resistance. Furthermore, the research progress of SENP1 inhibitors for cancer treatment is introduced. This study aims to provide theoretical references for cancer therapy by targeting SENP1.

14.
J Am Heart Assoc ; 13(5): e032456, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38390814

ABSTRACT

BACKGROUND: Intracranial aneurysm (IA) is common and occasionally results in life-threatening hemorrhagic strokes. However, the cell architecture and inflammation in the IA dome remain less understood. METHODS AND RESULTS: Single-cell RNA sequencing was performed on ruptured and unruptured human IA domes for delineating the cell atlas, gene expression perturbations, and inflammation features. Two external bulk mRNA sequencing-based data sets and serological results of 126 patients were collected for validation. As a result, a total of 21 332 qualified cells were captured. Vascular cells, including endothelial cells, smooth muscle cells, fibroblasts, and pericytes, were assigned in extremely sparse numbers (4.84%), and were confirmed by immunofluorescence staining. Pericytes, characterized by ABCC9 and HIGD1B, were identified in the IA dome for the first time. Abundant immune cells were identified, with the proportion of monocytes/macrophages and neutrophils being remarkably higher in ruptured IA. The lymphocyte compartment was also thoroughly categorized. By leveraging external data sets and machine learning algorithms, macrophages were robustly associated with IA rupture, irrespective of their polarization status. The single nucleotide polymorphism rs2280543, which is identified in East Asian populations, was associated with macrophage metabolic reprogramming through regulating TALDO1 expression. CONCLUSIONS: This study provides insights into the cellular architecture and inflammatory features in the IA dome and may enlighten novel therapeutics for unruptured IA.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Humans , Intracranial Aneurysm/genetics , Endothelial Cells , Inflammation/genetics , Lymphocytes , Aneurysm, Ruptured/genetics , Sequence Analysis, RNA
15.
Phytomedicine ; 126: 155053, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359483

ABSTRACT

BACKGROUND: Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE: This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS: Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 µM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS: The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and ß-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION: In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.


Subject(s)
Cigarette Smoking , Cilia , Flavanones , Animals , Rats , Rats, Sprague-Dawley , Cilia/metabolism , Interleukin-17/metabolism , Epithelial Cells
16.
Sci Adv ; 10(7): eadl1299, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363846

ABSTRACT

Reservoir computing is a powerful neural network-based computing paradigm for spatiotemporal signal processing. Recently, physical reservoirs have been explored based on various electronic devices with outstanding efficiency. However, the inflexible temporal dynamics of these reservoirs have posed fundamental restrictions in processing spatiotemporal signals with various timescales. Here, we fabricated thin-film transistors with controllable temporal dynamics, which can be easily tuned with electrical operation signals and showed excellent cycle-to-cycle uniformity. Based on this, we constructed a temporal adaptive reservoir capable of extracting temporal information of multiple timescales, thereby achieving improved accuracy in the human-activity-recognition task. Moreover, by leveraging the former computing output to modify the hyperparameters, we constructed a closed-loop architecture that equips the reservoir computing system with temporal self-adaptability according to the current input. The adaptability is demonstrated by accurate real-time recognition of objects moving at diverse speed levels. This work provides an approach for reservoir computing systems to achieve real-time processing of spatiotemporal signals with compound temporal characteristics.

17.
BMC Genomics ; 25(1): 22, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166591

ABSTRACT

BACKGROUND: Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS: In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS: These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.


Subject(s)
Gelsemium , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Gelsemium/metabolism , Stress, Physiological/genetics , Phylogeny , Gene Expression Regulation, Plant , Cold-Shock Response , Plant Proteins/metabolism
18.
J Food Sci ; 89(3): 1428-1441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265167

ABSTRACT

Understanding quantitative relationships between protein and other chemical components in diverse soybean genotypes (lines) grown in different locations and the firmness of tofu can provide scientific insight for selecting soybean suitable for tofu making. Locations showed significant effects on seed components, including total protein, major storage proteins, subunits and polypeptides of the major storage proteins, and calcium, but not magnesium or phytic acid. Results showed that 11S content, but not 11S/7S ratio, was only correlated with filled tofu firmness when analyzed over all locations. A strong and positive correlation between firmness and A3 polypeptide of the 11S protein content was found for both pressed tofu (r = 0.80, p < 0.001) and filled tofu (r = 0.76, p < 0.001) over three locations (overall pooled data) and within most individual locations. The correlation of filled tofu firmness and A3 polypeptide was significant for each of the three individual locations. However, the correlation of pressed tofu firmness and A3 polypeptide content was significant at two of three locations. Mean calcium content was positively correlated with mean pressed and filled tofu firmness over all locations, but calcium was not correlated with pressed tofu firmness at any individual location, and only one location showed a significant correlation of calcium and filled tofu firmness. In addition, pressed tofu firmness was found to be negatively correlated with tofu yield. The findings that A3 polypeptide's strong relationship with tofu firmness within certain locations may be used by the food industry to select proper soybean for manufacturing tofu and to facilitate tofu soybean breeding for tofu making.


Subject(s)
Glycine max , Soy Foods , Soybean Proteins/chemistry , Calcium , Plant Breeding , Peptides
19.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293124

ABSTRACT

Analyses of functional connectivity (FC) in resting-state brain networks (RSNs) have generated many insights into cognition. However, the mechanistic underpinnings of FC and RSNs are still not well-understood. It remains debated whether resting state activity is best characterized as noise-driven fluctuations around a single stable state, or instead, as a nonlinear dynamical system with nontrivial attractors embedded in the RSNs. Here, we provide evidence for the latter, by constructing whole-brain dynamical systems models from individual resting-state fMRI (rfMRI) recordings, using the Mesoscale Individualized NeuroDynamic (MINDy) platform. The MINDy models consist of hundreds of neural masses representing brain parcels, connected by fully trainable, individualized weights. We found that our models manifested a diverse taxonomy of nontrivial attractor landscapes including multiple equilibria and limit cycles. However, when projected into anatomical space, these attractors mapped onto a limited set of canonical RSNs, including the default mode network (DMN) and frontoparietal control network (FPN), which were reliable at the individual level. Further, by creating convex combinations of models, bifurcations were induced that recapitulated the full spectrum of dynamics found via fitting. These findings suggest that the resting brain traverses a diverse set of dynamics, which generates several distinct but anatomically overlapping attractor landscapes. Treating rfMRI as a unimodal stationary process (i.e., conventional FC) may miss critical attractor properties and structure within the resting brain. Instead, these may be better captured through neural dynamical modeling and analytic approaches. The results provide new insights into the generative mechanisms and intrinsic spatiotemporal organization of brain networks.

20.
J Bone Miner Metab ; 42(1): 17-26, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38062272

ABSTRACT

INTRODUCTION: The bone tissue is susceptible to hypergravity (+ G) environment. It is necessary to discuss the extent to which specific + G values are beneficial or detrimental to bone tissue. The objective of this study was to characterize the effects of high + G values on mechanical properties, microstructures, and cellular metabolism of bone. MATERIALS AND METHODS: 30 male Wistar rats aged 12 weeks were randomly divided into 5 groups, and bore different + G (namely + 1G, + 4G, + 8G, + 10G and + 12G) environments respectively for 4 weeks, 5 days each week, and 3 minutes each day. The macro-mechanical parameters, microstructure parameters, and mRNA transcription levels of the tibia were determined through the three-point bending method, micro-CT detection, and q-PCR analysis, respectively. RESULTS: As the + G value increases, hypergravity becomes increasingly detrimental to the macro-mechanical performance of rat tibia. Concerning the microstructure of cancellous bone, there appears to be a favorable trend at + 4G, followed by a progressively detrimental trend at higher G values. In addition, the mRNA transcription levels of OPG and RANKL show an initial tendency of enhanced bone absorption at +4G, followed by an increase in bone remodeling capacity as G value increases. CONCLUSION: The higher G values correspond to poorer macro-mechanical properties of the tibia, and a + 4G environment benefits the microstructure of the tibia. At the cellular level, bone resorption is enhanced in the + 4G group, but the bone remodeling capability gradually increases with further increments in G values.


Subject(s)
Hypergravity , Tibia , Rats , Male , Animals , Rats, Wistar , Bone Remodeling , RNA, Messenger/genetics , RNA, Messenger/metabolism , Bone Density
SELECTION OF CITATIONS
SEARCH DETAIL
...